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Abstract

Forced convection in a parallel plate channel filled with a porous medium, consisting of two layers with the same
porosity and permeability but with different solid conductivity, and saturated by a single fluid, is analyzed using a two-
temperature model. It is found that the effect of local thermal nonequilibrium is particularly significant when the solid
conductivity in each layer is greater than the fluid conductivity, and in these circumstances the effect is to reduce the
Nusselt number defined in terms of the overall effective thermal conductivity. © 2001 Elsevier Science Ltd. All rights

reserved.

1. Introduction

Owing to the use of hyperporous media in the cooling
of electronic equipment, there has recently been renewed
interest in the classical problem of forced convection in a
porous medium channel or duct. Global heterogeneity
effects due to the variation of permeability and/or ther-
mal conductivity, with the medium layered in the
transverse direction, have been analyzed in a number of
papers by the authors [1-4]. These papers have been
concerned with the usual situation in which thermal
equilibrium between the solid and fluid phases can be
assumed. However, there are several industrial applica-
tions where high-speed flow leads to a significant degree
of local thermal nonequilibrium (LTNE), even in the
case of steady forced convection, and this situation for a
homogeneous porous medium has also been analyzed by
the authors [5,6]. In the present paper the interaction
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between heterogeneity effects and LTNE effects is in-
vestigated.

2. Analysis

We consider the case (see Fig. 1(a)) of a parallel
plate channel with walls at y* = +H, divided into core
and sheath layers occupied, respectively, by two porous
media, of the same porosity ¢ and permeability K, and
saturated by the same fluid of thermal conductivity £,
but with the solid thermal conductivity k; being given
by

ks = ksl
ks = ksz

for 0 < |y*| < ¢H, (la)
for ¢H < |y*| < H. (1b)

Asterisks are used to denote dimensional variables. Thus
the mean solid conductivity is

]Es = éksl + (1 - é)ksz- (2)
We define
/€5| = ksl //ES, IESZ = ks2/1257 krel = Es/kfu (33)
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Iy, = constant

nd solid thermal conductivity kg;
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Fig. 1. Definition sketch, and plots of Nusselt number Nu versus effective conductivity ratio kegrario for various values of the solid-to-

fluid heat transfer number y (¢ = 0.5, ¢ = 0.5).
keir = ¢kf + (1 - ¢)1€57

Oke + (1 — P)ks

bk + (1 — Pk

The thermal energy equations for the solid and fluid
phases are taken to be

(1 =)V - (V') + he(Ty = T7) = 0,

(3b)

keffratio =

(4a)

OV (ke V'TT) + heo(T7 = T7) = (pep)v- VT (4b)
The fluid-solid heat exchange coefficient /g is assumed
to be uniform. The case where the wall temperature 7, is
uniform is considered. For the fluid flow, Darcy’s law is
assumed. Since the permeability is uniform, so is the
axial velocity U.

We introduce dimensionless variables and parame-
ters by

X" * I - T, Tr - T,
== =, Qg=""" == v 5
X H’ y H’ f Tt ’ Tt ) ( )
UH hyH?
po = UHloce): oA (6)
ke ket

Thus Pe is the Péclet number based on fluid properties,
and 75 is the dimensionless exchange parameter intro-
duced by Nield and Kuznetsov [6].

It is convenient to carry out the analysis in terms of
the following parameters:

_ ¢ _ (1 — d))krel
Nf—Feu Ns_ipe ) .
N, = "I[‘p + (1 - (p)krel] )
Pe

With subscripts 1, 2 referring to the subdomains
0<y<¢ &<y< 1, respectively, then, for j =1, 2, we
have

. 2
|: SijaiJ/z — Nh:l Qsj +Nh9fj = O, (83.)

2
a Nh—g:|0fj:0.

N (8b)

NyOg; + |:Nf

These equations constitute an eighth-order system,
which is to be solved subject to the following eight
symmetry/matching/boundary conditions:

0y 00y B
00 00
On =0n, O =00, —'=—7"
y Oy (10)
AL S R
sl ay = K52 ay y=cq,
6{2:952:0 aty:I. (11)

The individual equations in Eq. (10) express the
matching of temperature and heat flux at the interface
between the two layers, for the fluid and solid phases
separately. (This matching is based on the uniformity
principle discussed by Nield and Kuznetsov [6], that
requires that the matching conditions are independent of
the porosity.)
The variables are now separated by letting

O = Ore™, 0, = O, e™. (12)
With D denoting d/dy, we then obtain

[NSJES,-D2 - Nh} @, + N,O;, =0, (13a)
NyOy; + [N¢D* — N, — 2)6y; = 0. (13b)
Elimination of @y; leads to

{(NED? = N3 ) (NeD? = Ny = 2) = N } O = 0. (14)

The solution of this equation subject to the conditions in
Egs. (9) and (11) is

O = A coss,y + B coshspy,
@[‘2 =C Sinsaz(l —y) +D SinhSﬁz(l —y)

(15a)
(15b)
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Here, for j=1, 2,
Syj = { I:— (Nth +Nth]€sj + )Nslgsj>

~ ~ 2
+ {(Nth + Nthksj + msksj>

12 1/2
_ 4/'LNthNS/€Sj} ] / 2Nst/€s,} , (16a)
Spj = {

- ~ 2
+ { (Nth + NNk + A"Nsks,-)

12 1/2
—4/1NthN31€s,} } / 2M~Nsl€5,} . (16b)

The matching conditions in Eq. (10) then imply that

NiN; + NyNiks; + ANk,

Mc =0, (17)
where
M
(& G —S; —Sy
=515 sp182 52C3 5pCs
= 2 2 2 2
—sﬂCl S/EICZ Sa2S3 —Sﬂ2S4 ’
11;513'1151 slS/IISZ ks, C3 ksasp2Ca
Nsksl.&'il-#Nh —N;kslv/“-%—N;, N§k52v +Np, Ns’fsz‘/,z-*-Nh
A
B
and ¢ = , (18)
(o
D
where in turn
Cy =coss, ¢, S =sinsy ¢,
Cz = COShSﬁlé7 Sz = sinhs/;lﬁ, (19)

&), 83 =sinsp(l—E),
S4 = SinhSﬁz(l — é:)

C; =cossp(l —
C4 = COShSﬁz(l — é),
The eigenvalue equation (regarded as an equation for /)
is
det M =0. (20)
With Z found, the corresponding eigenvector is given by
-4 B —-C D
=== 21
Ay Ay A Ay’ (21)
where

C -5 -S4
A= | spS2 502G spCy

)

S?}l C2 S§2S3 —S1232S4

C -85 -S4
Ay = | =581 502G spCy |,
L 7Sil Cl SizSg, 7S%32S4
[ G C, -S4
A3 = | —=suS1 spSy spCy |, (22)
L —Sil Cl 5/2}1 C2 —S%2S4
e G =5
A4 = —S11S1 SmSz S“2C3
*Sil Cl S%ﬂ Cz S§2S3

(Without loss of generality one can put D = 1.)
Then Egs. (13b), (15a) and (15b) yield
0, = {[Nfsﬁl + Ny + A4 cossay + | — Nispy + Ny + 4

XB COShS‘/;ly}/]\/vh7 (233)

O = {[Nis?, + Ny + 2] C sinsa(1 - )

+ [ = Nishy + Ny + 2] D sinhs(1 = 3) b /.

(23b)
The heat flux at the boundary is given by
oTy oT;
v-on(GE) ra-on(T)
W ) en W ) n
Tfe /.x
= - Hf { |:¢kf512 + (1 d))ksZSocZ
N
(1 +ﬁf Sh A )]C+ [¢kfsﬁz + (1 = ¢)kasp
Ny, A
(1Y 2 o

The difference between the effective bulk temperature
and the wall temperature is

Toert — Tw = Tref{ /0C [¢0r + (1~ ¢)051]dy

+/€l (605 + (1 ¢)952]dy}

- refe/‘)f{'ii‘ {¢+(1—¢)(1+N vlﬂé,,)]
+%{¢+(1—¢)(1—&S21+1¢h>}
+¥[¢+(1*¢)(HN “2+1\/; )}

D(Cs—1) Ny , A
—_ 7 1— 1- .
" Sp2 {¢+( ¢)( Ny Sﬁ2+N
(25)
We define the Nusselt number as
2H 1"
Nu = el (26)

ket (T — Toerr)
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It is now just a matter of substituting from Egs. (24) and
(25) into (26). The factor T,se™ cancels. The expression
may be simplified by using the quadratic equations sat-
isfied by s, 55,, 57, and s7,. Further simplifications can
be made using the definitions in Eq. (7). In this manner
one obtains the expression

N — # Cs,p | Np + 525V ko NN,
(Nr + Ny) Ny + kaNes2,
kS NN,
+ DS/32 Ny + 2 U
N, — kszN sﬂ2 Syl
1 — ¢)N, BS 1
N, + k 1Nss2, Sp1 IN s/,1
c(l1-c¢C
Jcu=cnf, .
Su2 Nh + kszN 52
D(Cy—1
MGl o+ (27)
Sp2 Nj, 52N S/;z
=
Z
0—2 -1.5 -1 -0.5 0 0.5 1 1.5
(a) logo(k,,/ky)
=
Z.
2 a5 05 0 0.5 1 15
(c) log,o(k,/ky)

This expression can be readily checked for a special case,
namely that for a homogeneous medium, for which

ki =ko=1, B=D=0, C=4,
(28)
Sl = So2 :7'5/27 Sp1 = Spr = OQ.
For this case, Eq. (27) reduces to
2
Nu = {77;2 |:M' (Nh +ZNS) +N5Nh} }/{2(M.+
)
wofo(m+5n) + - om] . (29)

an expression which is independent of the value of £, and
which agrees with Eq. (36) of Nield and Kuznetsov [6] in
the limit as Ly and s, both tend to infinity. In the par-
ticular case of large n (and hence of large N,), as is
normal in a practical situation, Eq. (29) leads to

Nu:n2{1+n2¢(] _‘f’)sz(kf_kS)}. (30)

2

Ahe H?kegy

-2 -1.5 -1 0.5 0 0.5 1 1.5 2

(b) logo(kp/ke)
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() log,o(k,/ky)

Fig. 2. Plots of Nusselt number versus solid-to-fluid conductivity ratio ks, /k; for various values of the solid-to-fluid heat transfer

number 7 for: (a) kg /kr = 0.3; (b) ka1 /ky = 1; (¢) ki /ke = 3; (d) ko /lr =

10 (¢ = 0.5, = 0.5).
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This illustrates the immediate fact that the effect of
LTNE is negligible in the case where the porosity tends
to either zero or unity or when the solid and fluid con-
ductivities are closely the same. Further, it is seen that
the effect of LTNE is to increase or decrease Nu (as we
have defined it) according as k is less than or greater
than k¢, respectively.

3. Results and discussion

We have calculated Nu from Eq. (27) for various
parameter values. We confirmed that Nu is independent
of Pe as expected. We checked that we could recover the
results for the homogeneous case expressed in Fig. 3 of
[6] in the limiting case of very large Biot number (cor-
responding to the isothermal boundary conditions that
we have adopted in the present work). We then checked
that we could obtain results in agreement with the
middle curve in Fig. 4(b) of [1] for the case of local
thermal equilibrium. This was a severe test of the cor-
rectness of the present analysis and its numerical im-
plementation, because the formulation in the present
paper is distinctly different from that in [1]. In the
present paper an eigenvalue equation is solved for the
separation constant (decay parameter) 4 and the result is
fed into an expression for the Nusselt number Nu,
whereas in [1] the value of Nu is obtained directly from
another eigenvalue equation.

Our results are presented in Figs. 1 and 2, for the case
where the porosity is 0.5 and each layer occupies half of
the channel. Fig. 2 has been designed for comparison
with Fig. 4(b) of [1]. As we have already reported, the
results for a large value of 7 (i.e., for negligible LTNE
effects) match those in our earlier paper [1], and are in
fact independent of the value chosen for & /. Fig. 1(b)

shows that the chief effect of LTNE is to reduce the
Nusselt number when Ao 18 greater than unity (and
has little effect when it is less than unity).

Fig. 2 presents results for various values of & /k; and
ks2/ke varied separately. As kg /kc increases the curves
become more peaked, with the position of the peaks
occurring at increasing values of &, /k; and the effect of
LTNE is to reduce the magnitude of the peaks. When
ks1 /Ky 1s less than unity the effect of LTNE is small. (We
have not presented results for & /k; = 0.1 because they
closely resemble those for & /kr = 0.3.) The existence of
the peaks was explained in [1] as a result of two op-
posing effects of conductivity variation.
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